Imaclim-R: an innovative hybrid model to foster the dialog on sustainable pathways, energy policies and climate stabilization

Renaud Crassous-Doerfler, Olivier Sassi, Jean-Charles Hourcade, Céline Guivarch, Henri Waisman, Vincent Gitz
CIRED, France

crassous@centre-cired.fr

International Input-Output Meeting
Séville, 9th July 2008
Outline

- Motivations
- Technical Features of the Imaclim-R model
- From sector-based expertise to global assessment
- New insights from the model
Outline

- Motivations
- Technical Features of the Imaclim-R model
- From sector-based expertise to global assessment
- New insights from the model
What we would like to represent?

Consistent long-run scenarios…

- Plausible and tangible technological change pathways
- Binding physical constraints (asymptotes, technologies embodied in existing capital stock)
- Binding economic constraints (investment levels and allocation, terms of trade, final demand patterns, budget constraint)
- Explicit growth engine (partial or total catch-up, specialization, etc.)

…to explore system-wide issues:

- Mimetic development styles against sustainability
- Food-Energy-Sequestration issue
- Competitiveness and carbon leakage
- Transferable quotas and terms of trade
- Etc.
Policy-oriented motivations

- The need to assess **which instruments** can enhance pre-identified technical potentials in a real globalized economy, at different time horizons.

- A quantitative way to feed the dialog between **experts and stakeholders** around tricky issues: What costs? Macro feedbacks? Rebound effects? Rhythm of GHG mitigation? Barriers to be removed? Design of institutions?
A few modelling paradigms since the 80’s

Simulation

- **Edmonds Reilly**
 - AIM
 - MiniCam
 - ASF
 - WEM
 - TIMER
 - IPAC
 - PETRO

- **SGM**
 - Imaclim-R

Optimization

- **MARKAL**
 - MESSAGE
 - GET
 - TEESE
 - LEAP
 - LDNE
 - New Earth 21

- **Global 2100**
 - MARKAL MACRO
 - MESSAGE MACRO
 - MERGE
 - CETA
 - DNE21
 - MARIA
 - GRAPE

- **GREEN**
 - EPPA
 - AMIGA
 - GEMINI-E3
 - WORLDSCAN
 - GTEm
 - EDGE
 - WiaGEM

- **DICE**
 - RICE
 - RICE-FEEM
 - DEMETER
 - ENTICE(-BR)
 - Connecticut Model
 - COMBAT
 - Khana Chapman
 - MIND
Current issues not (or rarely) addressed in the climate policy literature

- Poor representation of the growth engine: large bifurcations cannot be treated \textit{at the margin} of baseline trajectories
- Broad spread of long run scenarios (e.g. SRES): a misunderstanding about uncertainty?
- Weak representation of medium-run dynamics: a lack of insights about the magnitude of transition costs
- Few attempts to use models of a non-perfect world with imperfect foresight and disequilibria: the idea that existing ‘barriers’ can be easily removed is not backed by quantitative assessment
The ‘C-T-L’ challenge of hybrid modelling
Well-known difficulties: Linking pre-existing models always intricate...

Macro-economic growth models / CGEM

Top-Down
- Physical Production Capacities?
- Stocks of equipments?
- Technologies?
- Structural content of growth?
- Financial constraints on investments?
- Demand dynamics? Relative prices?

Bottom-up

Sector-specific models
- Cost-effective planning and investments
- Technological choices
- Technical representation of the energy system

Which world in 2050?
Well-known difficulties: Linking pre-existing models always intricate... and often unsatisfying

Macro-economic growth models / CGEM

- Relative prices
- Budget constraints
- Savings
- Investment allocation
- Structural change

Not only elasticities!
- Technology dynamics
- Equipment stocks
- Infrastructures

Sector-specific models
- Cost-effective planning and investments
- Technological choices
- Physical representation of development styles

Top-Down

Bottom-up
Outline

- Motivations
- Technical Features of the Imaclim-R model
- From sector-based expertise to global assessment
- New insights from the model
A recursive dynamic approach to disentangle short run constraints/adjustments and long run dynamics

Static equilibrium t

Updated technical and structural parameters (i-o coefficients, stocks, etc.)

Static equilibrium $t+1$

Dynamic modules:
- Productivity catch-up, Efficiency gains, substitutions, stocks' dynamics, reserves depletion, etc.

Snapshot of the economy at year t: Price-signals, profitability rates, Physical outputs

Short run equilibrium under capacity and technology constraints

Moving constraints
General features of the Imaclim-R model

1. A recursive dynamic framework:
 - Succession of **static equilibriums** under short-term constraints
 - Consistent Macroeconomic snapshot (inc GE effects)
 - Technology and capacity constraints
 - **Moving constraints** informed by reduced forms from BU models
 - Stock dynamics, technological asymptotes, technological choices

2. A comprehensive **price & physical quantities** account:
 - Energy (Mtoe), transportation (PKT) & material accounting
 - Hybrid matrices, physical production capacities, physical i/o coefficients
General features of the Imaclim-R model

- Utility maximization under income constraint does not explain well patterns of energy and transportation demand
 - Energy consumption does not provide satisfaction by itself but through the services (light, heating, devices) it delivers.
 - Transport consumption shows specific patterns: Zahavi's law (constant time-budget), rebound effect, congestion.
 - Energy consumption and transportation are driven and constrained by the ownership of durables, cars and square meters of housing (themselves driven by their prices)

- Explicit the technical potentials behind 'all-in-one' production functions
 - Distinguish short-term rigidities and long-term flexibilities (Marshall, Johansen, 1930): with rigid i-o coefficients on the short-run
 - Allows to incorporate all the information available from all sources on the dynamics of the i-o coefficients.
 - Back to the real 'envelope' of technical possibilities over the long-term: no mathematical constraints such as constant elasticity.
Static equilibrium under short-run constraints: demand

Utility maximization:

\[
U_k(\hat{C}_k, \hat{S}_k) = \prod_{\text{goods } i} \left(C_{k,i} - b n_{k,i} \right)^{\xi_{k,i}} \left(S_{k,j} - b n_{k,j} \right)^{\xi_{k,j}}
\]

Under two constraints:

\[
p_{tc_k} \cdot \text{Income}_k = \sum_i pArmC_{k,i} \cdot C_{k,i} + \sum_{\text{Energies } E_i} pArmC_{k,E_i} \cdot \left(S_{k,cars}^c \cdot \alpha_{k,E_i}^{cars} + S_{k,m}^m \cdot \alpha_{k,Ei}^{m} \right)
\]

\[
T_{disp_k} = \sum_{\text{means of transport } T_j} \int_0^{pkm_{j}} \tau_j(u) du
\]

Capacity=function (infrastructures, equipments)
General features of the Imaclim-R model

- Utility maximization under income constraint does not explain well patterns of energy and transportation demand
 - Energy consumption does not provide satisfaction by itself but through the services (light, heating, devices) it delivers.
 - Transport consumption shows specific patterns: Zahavi's law (constant time-budget), rebound effect, congestion.
 - Energy consumption and transportation are driven and constrained by the ownership of durables, cars and square meters of housing (themselves driven by their prices)

- Explicit the technical potentials behind 'all-in-one' production functions
 - Distinguish short-term rigidities and long-term flexibilities (Marshall, Johansen, 1930): with rigid i-o coefficients on the short-run
 - Allows to incorporate all the information available from all sources on the dynamics of the i-o coefficients.
 - Back to the real 'envelope' of technical possibilities over the long-term: no mathematical constraints such as constant elasticity.
Static equilibrium under short-run constraints: supply

- Short-term lock-in on technology and capacity (putty-clay capital), represented by a rigid cost function plus a flexible rate of capacity utilization

\[p_{k,i} = \sum_j p_\text{Arm}IC_{j,i,k} \cdot IC_{j,i,k} + \left(\Omega_{k,i} \cdot w_{k,i} \right) \cdot l_{k,i} \cdot (1 + t\alpha_{k,i}^w) + \pi_{k,i} \cdot p_{k,i} \]
Additional features

- One-year time steps
- Walrasian equilibrium of all goods and services (Armington-type international trade)
- Capital flows fixed or endogenized
- Unemployment (wage curve)
- 12 regions (inc. USA, Europe, China, India, Brazil, OPEC, CIS)
- 12 sectors (5 energy supply and conversion, 3 transportation, building, energy-intensive industry, agriculture, composite)
Dynamic modules: the growth engine

- **A potential growth** the drivers of which are:
 - Demography
 - Saving rates (linked to the evolution of the pyramid of ages)
 - Catching up assumptions about labor productivity in each sector

- **Gaps between potential and real growth:**
 - Interaction with the energy sector
 - Price shocks
 - Maladaptation of installed equipment
 - Technology choices
 - Interaction with international markets
 - Representation of many sources of frictions on:
 - Capital flows
 - Investments derived from imperfectly expected increases of future demand and profitability
 - Rigidity of the terms of trade
 - Endogenous transitional disequilibrium with phases of over and under production capacities with related price cycles
Dynamic modules: sectoral modules

- An explicit **technology portfolio** for critical elements of the energy system
 - Power generation (Advanced coal, CCS, nuclear, various renewable…)
 - Light Duty Vehicles (Efficient ICE, Hybrid, plug-in Hybrid…)
 - Alternative liquid fuels (Biofuels, Coal to liquid…)

- An effort to represent **physical constraints** bearing on energy supply and demand
 - Temporal availability of oil resources
 - Load curve for power generation
 - Technical asymptotes for energy efficiency gains

- Including **Structural Change** within the ITC vs. ATC debate
 - R&D and learning-by-doing mechanisms applies to the sets of techniques
 - Endogenous Structural Change results from interactions between demand, supply, and ITC mechanisms
Outline

- Motivations
- Technical Features of the Imaclim-R model
- From sector-based expertise to global assessment
- New insights from the model
Methods to integrate sector based expertise, links with B-U models and data

- **Exogenous prescription**
 - One input-output coefficient follows a prescribed temporal trend
 - Test of assumptions, macroeconomic consistency of scenarios

- **Reduced forms**
 - A function is calibrated to reproduce, at an aggregated level, the reaction of a technical coefficient to a signal
 - Calibration of the function with runs of a B-U model on the signal’s interval of variation

- **Compact models**
 - Optimization of the technological choices in one isolated sector under current and expected economic conditions
 - Simplified reproduction of a complex B-U modeling structure
 - Interaction with B-U models to calibrate reactions and evolutions of the technologies portfolio

- **An existing Bottom-up Model**: WEM-ECO (IEA), POLES, Markal France…
Ongoing development and quest for BU data/discussion

- **Current state of dynamic modules:**
 - Comprehensive Bottom-up submodels: electricity, fossil fuels, steel, cement, residential, cars
 - Reduced forms: transportation technologies and infrastructures, services, agriculture
 - Exogenous prescription: transportation input in sectors, material content of investment, material content of infrastructures

- **Advantages of this approach:**
 - Transparency and discussion along the scenario-generating process
 - Keeps open all the dynamics but still to be represented:
 - Specific modules devoted to the input-output structure in each sector
 - Critical ‘silent’ input-output coefficients (e.g. transportation in sectors)
 - Harder work but force us to explicit all the dynamics!
Outline

- Motivations
- Technical Features of the Imaclim-R model
- From sector-based expertise to global assessment
- New insights from the model
No-policy scenario:
the mechanisms underlying the risks of increasing emissions

2000-2040:
-Structural change: growing importance of developing countries
-Back to coal in power generation

2040-2060:
High oil prices, biofuels

2060-2100:
Saturation of biofuels, Coal-to-Liquid
Policy scenarios

- **CO2 price 550 ppm**
- **CO2 price 450 ppm**
- **Emissions 550 ppm**
- **Emissions 450 ppm**
- **Emissions REF**
Policy scenarios: Effective reductions may differ from *ex ante* technical potentials

Mean CO₂ reductions 2010-2030 (world)

- Energy: 1.5 GtCO₂/year
- Transport: 1.0 GtCO₂/year
- Residential: 0.5 GtCO₂/year
- Industry: 2.5 GtCO₂/year
- Agriculture & Composite: 0.5 GtCO₂/year

50 W/m²/yr available but inertia!

Low carbon technologies under 100 $/tCO₂ but inertia
Policy scenarios: possible transition costs could explain the fears of decision-makers

Policy scenarios: possibly high transition costs must be avoided with fine-tuned measures

Thank you!

crassous@centre-cired.fr