The Resilience of the Indian Economy to Rising Oil Prices as a Validation Test for a Global Energy-Environment-Economy CGE Model

C. Guivarch, S. Hallegatte and R. Crassous

guivarch@centre-cired.fr
Motivations... can we trust our model?

- In our modeling results, we noticed India is highly vulnerable to oil shocks.
 - At odds, with the observed resilience of the Indian economy to rising oil prices over 2003-2006
- Twofold objective:
 - Understand the discrepancy between our model’s results and observations... and, if possible, correct this discrepancy;
 - Disentangle the mechanisms at play in India’s response to rising oil prices.
Growth in Imaclim-R model

- Exogenous potential growth engine
 - Exogenous technical progress that increases labor productivity (as Solow’s neoclassical model of economic growth)
 - Convergence assumption (Barro and Sala-i-Martin 1992):
 - For India, default assumptions for labor productivity growth lie between 5.7% and 5.3% per year over the 2003-2006 period.

- But gaps between potential growth and effective growth (endogenous to the model)
 - Interaction between growth engine and short-term constraints:
 - Available capital flows for investments
 - Not full utilization of production factors (labor and capital) due to the inadequacy between flexible relative prices (including wages) and inert capital vintages characteristics.
Growth in Imaclim-R model

- Exogenous potential growth engine
 - Exogenous technical progress that increases labor productivity (as Solow’s neoclassical model of economic growth)
 - Convergence assumption (Barro and Sala-i-Martin 1992):
 - For India, default assumptions for labor productivity growth lie between 5.7% and 5.3% over the 2003-2006 period.

- But gaps between potential growth and effective growth (endogenous to the model)
 - Interaction between growth engine and short-term constraints:
 - Available capital flows for investments
 - Not full utilization of production factors (labor and capital) due to the inadequacy between flexible relative prices (including wages) and inert capital vintages characteristics.
Default parametrization

- GTAP 6 database (2001)
- Exogenous trends for demography and for labor productivity growth
- Gradual reduction of international capital imbalances on the long term
- Standard market-share equations depending on relative export prices for energy goods trade
The model does not reproduce observations

International oil price

GDP growth

- Oil price (US$/bbl) WRI data
- Oil price growth annual (%) (right axis)

- World Bank data
- Simulation with increasing oil prices
- Simulation with constant oil prices
Can labor productivity explain the difference?

To reproduce observed growth path, annual labor productivity gains of 14% are necessary. Realistic?

- Peak at 8.7% for the “Asian dragons” (South Korea, 1983), 9% for France in the post-war period.
In search for other mechanisms

- February 2006 IMF country report on India (Fernandez, 2006): four key mechanisms that explain the strong Indian growth despite rising oil prices:

 1. *Sectoral reallocation away from oil-intensive activities*;

 2. *Strong capital inflows and trade deficit*;

 3. *Incomplete pass-through of international petroleum prices*;

 4. *Rise of India as an exporter of refined products*
1. *Sectoral reallocation*

- Well reproduced by the default model

Sectors contributions to Added Value growth (mean value 2003-2006)

\[
\frac{\Delta AV_{\text{sector}}}{\Delta AV_{\text{total}}}
\]

- Imaclim-R simulation
- World Bank data
2. *Strong capital inflows and trade deficit*

- Default assumption: capital and trade imbalances are gradually reduced over time
 - Difficult to predict/model capital flows over the short-term
 - Inconsistent with observations
- Modified model: Capital inflows allow the observed increase in Indian trade deficit

![Graph showing trade deficit from 2001 to 2007](graph.png)
3. *Incomplete pass-through of international oil prices*

- Default assumption: no modification of tax and subvention structure
 - Difficulty to predict (all the more to model) political response to exogenous shocks
 - Political response observed: 40% pass-through of international oil prices to domestic consumers via cuts in government-owned petroleum company margins

- Modified model: equivalent tax reductions to represent the incomplete pass-through
4. Rise of India as an exporter of refined products

- Default assumption: Endogenous prices formation and export shares in the model doesn’t reproduce the rise of India’s exports of refined products.
 - Model: from US$2.1 billion in 2003 to 3.1 in 2006

- Modified model: volume of refined-products exports forced to follow data.
Modified model results

GDP growth

- World Bank data
- IMACLIM-R - Default parametrization
Modified model results

GDP growth

- World Bank data
- IMACLIM-R - Default parametrization
- IMACLIM-R - Exporter refined products
Modified model results

GDP growth

- World Bank data
- IMACLIM-R - Default parametrization
- IMACLIM-R - Exporter refined products
- IMACLIM-R - Passthrough 40%
Modified model results

GDP growth

- World Bank data
- IMACLIM-R - Default parametrization
- IMACLIM-R - Exporter refined products
- IMACLIM-R - Passthrough 40%
- IMACLIM-R - Trade Balance forced
Modified model results

GDP growth

- World Bank data
- IMACLIM-R - Default parametrization
- IMACLIM-R - Exporter refined products
- IMACLIM-R - Passthrough 40%
- IMACLIM-R - Trade Balance forced
- IMACLIM-R - All three mechanisms added
Explaining the remaining difference

- Required labor productivity growth assumptions

- Other economic mechanisms neglected or imperfectly reproduced:
 - Monetary policy (Blanchard and Gali 2007)
 - Imperfection of data sources used to calibrate the model
Conclusions

- A first step toward validation of a long-term global E3 CGE model against macroeconomic data.
 - Need for similar tests with other countries, other periods, other models...

- Policy implication: highlight and assess two mechanisms that can smooth adverse effect of oil shocks over the short-term (subsidy to consumption and capital inflow or trade balance deficit).

- Methodological implication: discrepancy arises from disregarded short-term mechanisms:
 - Acceptable when analyzing long-term issues or path-dependency?
 - Anyway, a major role in the transition dynamics and policy costs.
Conclusions

- A first step toward validation of a long-term global E3 CGE model against macroeconomic data.
 - Need for similar tests with other countries, other periods, other models...
- Policy implication: highlight and assess two mechanisms that can smooth adverse effect of oil shocks over the short-term (subsidy to consumption and capital inflow or trade balance deficit)
Conclusions

- A first step toward validation of a long-term global E3 CGE model against macroeconomic data.
 - Need for similar tests with other countries, other periods, other models...
- Policy implication: highlight and assess two mechanisms that can smooth adverse effect of oil shocks over the short-term (subsidy to consumption and capital inflow or trade balance deficit)
- Methodological implication: discrepancy arises from disregarded short-term mechanisms:
 - Acceptable when analyzing long-term issues or path-dependency?
 - Anyway, a major role in the transition dynamics and policy costs.
Thank you for your attention!

guivarch@centre-cired.fr
Static equilibrium under short-term constraints

Updated parameters (tech. coef., stocks, etc.)

Static Equilibrium t

Growth engine
Electric sector
Transportation

Bottom-up sub models (reduced forms)
Macroeconomic growth engine

Price-signals, rate of return
Physical flows

Evolution of constraints